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Abstract. The effects of wind and topographic slope are important considerations when determining the rate and direction
of spread of wildfires. Accordingly, most models used to predict the direction and rate of spread contain components
designed to account for these effects. Over the years, a variety of different approaches have been developed. In the present
manuscript, we examine the various mathematical models employed to account for the effects of wind and slope at a
formal level, making comparisons where appropriate. The methods reviewed include scalar methods, which ignore the
directional nature of wind and slope effects, as well as methods in which the effects of wind and slope are combined in a
vectorial manner. Both empirical and physical models for wind–slope correction are considered.

Introduction

Research into wildland fires over the last 50–60 years has iden-
tified wind and terrain as two of the chief factors determining
the severity and rate of spread of a fire (Fons 1946; Byram 1959;
Byram et al. 1966; McArthur 1967; Weise 1993; Nelson 2002;
Viegas 2004a; Linn et al. 2007). Wind has the effect of tilting the
flames forward, over and onto unburnt fuel, extending the pre-
heating range and thus leading to more intense fire behaviour
and greater rates of spread. The slope of the terrain has a similar
effect, by essentially bringing the ground, and hence the fuel on
it, into closer proximity to the flames. Under typical conditions,
fires propagating upslope with the wind exhibit the greatest rates
of spread, whereas fires travelling downslope against the wind
exhibit the lowest rates of spread. Consequently, the majority of
fire spread models in operational use today contain a component
that attempts to modify fire spread rates by applying a factor that
emulates the combined effects of wind and topographic slope.

In the wake of the disastrous bushfires over the high country
of south-eastern Australia during January 2003, there has been
renewed interest in the interaction of wind and terrain and their
effect on fire behaviour. Evidence arising from the 2003 fires
suggests that the interaction of weather (particularly wind) and
terrain played a crucial role in escalating the fire to the level that
impacted on Canberra suburbs. The 1994 South Canyon fire on
Storm King Mountain, Colorado, during which 14 fire-fighters
tragically lost their lives, serves as another example of the impor-
tance of understanding the interaction of wind and terrain (Butler
et al. 1998, 2003), as do other blow-up fires such as the Butte
Fire of 1985 (Rothermel and Mutch 1986) and the Mann Gulch
Fire of 1949 (Rothermel 1993). Terrain–wind interactions such
as dynamic channelling, coupled with low fuel moisture content,
can result in massive expansion of the flanks of a fire and the gen-
eration of severe ember storms (McRae 2004b; Dold et al. 2005;
McRae et al. 2006). Although it is important not to underesti-
mate the role that additional factors, such as fuel properties and

fire–atmosphere–terrain interactions, play in these types of
blow-up conditions, it is worthwhile to examine the way that
wind and terrain parameters such as topographic slope and aspect
enter into fire propagation models. Indeed, because the combined
effects of wind and topographic slope form a major compo-
nent of general terrain–weather interactions, a valuable first step
is to quantitatively review the different methods employed in
accounting for these effects in existing point-functional models.

We use the term ‘point-functional models’ as in Linn et al.
(2007) to describe models that use information about wind and
terrain at a particular point location to calculate rate and direc-
tion of fire spread at that location. Classifying these models as
such distinguishes them from the more computationally inten-
sive coupled transport models (e.g. Linn 1997; Forthofer et al.
2003; Butler et al. 2006; Linn et al. 2007). Linn et al. (2007)
provide examples of situations in which local information on
wind and terrain factors should produce good fire spread pre-
dictions and situations where it should not. Hence, although wind
and slope correction methods can improve the predictive capa-
bility of point-functional models of fire spread, their inclusion
does not necessarily overcome all of the limitations of these
models. This disadvantage, however, is balanced by the fact
that point-functional models are more intuitive and numerically
inexpensive, when compared with coupled transport models.

Weise and Biging (1997) give a qualitative comparison of sev-
eral point-functional fire spread models that incorporate wind
and slope effects and compare their predictions with experi-
mental data. The focus of the present manuscript is thus not to
compare the quality of prediction of various fire spread models
incorporating wind and slope effects; rather, it compares the par-
ticular components of the models pertaining to wind and slope
effects at a formal level. We present a detailed review of the
formal wind–slope correction methods used in a suite of fire
spread models, some of which were developed after the publi-
cation of Weise and Biging (1997). The present manuscript then
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serves as a continuation of the work of Weise and Biging, as
well as a companion paper that hopefully elucidates some of the
mathematical details. The methods considered here are those of
McArthur (McArthur 1966, 1967; Noble et al. 1980), Rother-
mel and Albini (Rothermel 1972; Albini 1976), Finney (1998),
McAlpine et al. (1991), Nelson (2002), McRae (2004a), Pagni
and Peterson (1973), and Morandini et al. (2002).

It is important to note that in each of the methods discussed
in the following sections, it is implicitly assumed that a given
set of wind and slope conditions uniquely defines the corre-
sponding rate and direction of spread of a fire. In making this
assumption, we are ignoring dynamic feedback effects and fire–
atmosphere–terrain coupling, which, in the general case, mean
that the rate and direction of spread of a fire cannot be univocally
defined in terms of the wind and slope conditions (Viegas and
Pita 2004; Viegas 2004a, 2006; Linn et al. 2007). Similarly, we
are also ignoring transverse convective effects along the fireline
that can cause dynamic fire behaviour, even when wind and slope
conditions are unchanging (Viegas 2002; Oliveras et al. 2006).

Notation and conventions

Central to the idea of wind–slope correction of fire spread
rates are the notions of wind vector, topographic slope and
topographic aspect, which we now formally define.

The direction and speed at which a fire propagates are largely
determined by the wind direction and speed. These two quanti-
ties make up a wind vector, which we denote by w. The wind
speed may then be denoted as ‖w‖ while the wind direction
will be denoted by the angle θw. However, owing to the con-
vention that wind direction is given in terms of where the wind
is coming from rather than where it is heading, the wind vec-
tor points in the θw + π direction, expressing angles in radians
(π = 180◦). This means that the direction of fire spread (in flat
terrain) will be opposite to the wind direction (e.g. a westerly
wind will propagate a fire towards the east).

Topographic slope is the maximum inclination of a terrain
surface at a particular point. Given an elevation function h(x,y),
where x and y denote the horizontal quantifiers of position, e.g.
longitude and latitude, the topographic slope at a point is for-
mally defined as the length of the gradient vector field. Recall
that the gradient vector field is given by

∇h(x, y) =
(

∂h

∂x
,
∂h

∂y

)

and thus has length

‖∇h‖ =
√(

∂h

∂x

)2

+
(

∂h

∂y

)2

Topographic slope is typically described by the topographic
slope angle, which we denote as γs. We note that ‖∇h‖ = tan γs.

The alignment of topographic slope is known as topographic
aspect. To formally define topographic aspect, consider an out-
ward pointing vector that is normal to the terrain surface at
some given point. This normal vector can be decomposed into
two components, the horizontal component, which lies in the
horizontal xy-plane, and the vertical component, which is per-
pendicular to the xy-plane. The direction of the horizontal
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Fig. 1. Schematic depicting the relationship between the cardinal and
terrain-following coordinates and the terrain surface contours.

component of the normal vector defines the topographic aspect,
which is expressed in terms of the angle between this direction
and due north. We note that the aspect direction points downs-
lope. Given an elevation function h(x,y), which represents the
topography, the topographic aspect can be equivalently defined
as the direction of the negative gradient vector field −∇h(x,y).
We denote topographic aspect by the angle γa. Note that if the
wind direction and topographic aspect are in alignment, with the
wind flowing upslope, then γa = θw, whereas for wind flowing
directly downslope, γa = θw + π (expressing angles in radians).

It is important to note that the conventions associated with
the cardinal compass directions, in which angles increase in the
clockwise direction (left-handed coordinate system), are at odds
with the usual algebraic convention in which angles increase
in the anticlockwise direction (right-handed coordinate system).
As applications are employed in operational environments that
typically deal with directions as determined by compass, we
shall adopt the left-handed coordinate system throughout. This
means that sine and cosine functions will appear in reverse order
to what can be expected in a basic algebra textbook.

We will often find it convenient to work in terrain-following
coordinates that align with the upslope and across-slope (trans-
verse) directions. To distinguish these coordinates from the
standard coordinates aligned with the cardinal directions, we
make the following definitions. Standard coordinates are defined
with respect to the {x,y} coordinate frame, where the positive y-
axis is aligned with due north and the positive x-axis is aligned in
the easterly direction. Local (terrain-following) coordinates are
defined at each point on the terrain surface with respect to the
{t,u} coordinate frame, where the positive u-axis points in the
upslope direction and the positive t-axis points in the transverse
direction, to the right of the positive u-axis. Fig. 1 illustrates the
relation between the two coordinate systems and a terrain sur-
face. We will use the notation ŷ, û, etc. to denote, respectively,
the unit vectors in the directions of y, u, etc.

We also make the distinction between the base, or no-wind,
rate of spread and the wind-induced rate of spread of a fire.
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The base rate of spread is the rate of spread of a fire through
a particular fuel under conditions of no wind and no slope.
The wind-induced rate of spread is the rate of spread of the
fire through a particular fuel under windy conditions but in
the absence of slope. In the current paper, both the base and
wind-induced rates of spread will be assumed to be given as
some function of the relevant meteorological variables and fuel
properties. Relevant variables for the base rate of spread include
temperature, rainfall and humidity, and fuel properties such as
moisture content and flammability. Relevant variables for the
wind-induced rate of spread would also include wind speed and
direction. In what follows, we will use R0 to denote the base rate
of spread and Rw to denote the wind-induced rate of spread.

To incorporate the combined effects of wind and slope in
models of fire spread, two general approaches are commonly
employed. The first approach assumes the base rate of spread as
given and calculates a wind–slope correction factor. This factor
is then used to modify the base rate of spread to give a rate of
spread that incorporates the effects of wind and slope (Rothermel
1972; Albini 1976; McAlpine et al. 1991; Santoni et al. 1999;
Morandini et al. 2002). In the second approach, a slope cor-
rection factor is calculated. The wind- and slope-affected rate of
spread is then given by this factor multiplied by the wind-induced
rate of spread (McArthur 1966, 1967; Noble et al. 1980; McRae
2004a).

Wind–slope correction methods

McArthur
McArthur’s fire danger meters form the basis for fire danger
forecasting and for understanding fire behaviour in Australia
(McArthur 1966).The meters have been converted into equations
for more convenient use in computer applications (Noble et al.
1980). The equations allow calculation of the wind-induced rate
of spread of a fire using standard meteorological variables and
measures of drought factor or grass curing as inputs. The direc-
tion of the wind-induced rate of spread is taken to be opposite
to the wind direction.

For a fire propagating in sloping terrain, this wind-induced
rate of spread is amended as

R(w, γs) = Rw exp(0.069γs) (1)

where γs is the slope of the terrain expressed in degrees. Eqn 1
embodies the observation that a fire’s rate of spread approx-
imately doubles for every 10◦ increase in topographic slope (it
halves for a 10◦ decrease in slope).

It is important to note that some fire spread models in use in
Australia that do not employ the McArthur fire spread model still
use Eqn 1 to adjust for slope effects. Examples of such models
are the Western Australian ‘Red Book’ (Sneeuwjagt and Peet
1985; Beck 1990) and the FIRESCAPE model (McCarthy and
Cary 2002).

Strictly speaking, Eqn 1 is a scalar equation and as such only
applies to a fire travelling directly upslope (or downslope), which
is to say that it only applies when the wind direction is directly
upslope or downslope. In reality, however, both wind and slope
act in combination to alter the speed and direction that a fire
will spread, and at any given site it is unlikely that these two
factors will be in alignment. Consequently, a fire at a given site

will generally not be travelling directly upslope (or downslope).
When this is the case, Eqn 1 will not directly apply.

To obtain a more generally applicable expression, it is conve-
nient to treat a fire’s rate of spread and its direction of propagation
as a single rate of spread vector R. Thus at any given point on
the fire front, the vector R has length equal to the scalar rate of
spread R and points in the direction that the fire is propagating.
We may proceed in at least two ways:

1. Scalar method: we can use Eqn 1, replacing the topographic
slope γs with the slope experienced in the direction that the
fire is propagating, to obtain a slope-corrected scalar rate of
spread; or

2. Vector method: we can vectorially decompose the wind-
induced rate of spread vector into components that point
upslope and across-slope, apply Eqn 1 to the upslope compo-
nent and then recompose the amended components to obtain
a slope-corrected rate of spread vector.

Proceeding the first way, we are required to calculate the
effective slope experienced in the direction of the wind-induced
rate of spread vector Rw. If we let the effective slope angle be ψ,
then tan ψ is given by the directional derivative (Stewart 1991)
of the terrain surface in the direction of the wind-induced rate
of spread vector. We assume that the terrain surface is given as
the graph of some elevation function h(x,y). To calculate tan ψ

at a point on the terrain surface, it is useful to use the terrain-
following coordinates defined in the Notation and conventions
section. The unit vector in the direction of Rw, denoted R̂w,
expressed in this coordinate system is given by

R̂w = sin(θw − γa)t̂ + cos(θw − γa)û (2)

where t̂ and û are the unit vectors in the positive t and u directions.
The directional derivative of the terrain surface h in the direction
of R̂w is defined by (Stewart 1991) and is given by

DR̂w
h = ∇h · R̂w (3)

Thus, calculating in local coordinates, we have

tan ψ = DR̂w
h

= ∇h · R̂w

=
(

∂h

∂t
t̂ + ∂h

∂u
û

)
· (sin(θw − γa)t̂ + cos(θw − γa)û)

= ∂h

∂t
sin(θw − γa) + ∂h

∂u
cos(θw − γa)

Recall at this point that we arranged our coordinate axes so
that the t-axis aligned with the transverse direction. This means
that the t-axis follows lines of constant elevation and so

∂h

∂t
= 0

Similarly, the u-axis is aligned with the upslope direction
and so

∂h

∂u
= tan γs

Hence
tan ψ = tan γs cos(θw − γa) (4)
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Therefore the slope-corrected rate of spread, according to this
method, is given by

R(w, γs) = Rw exp(0.069 tan−1(tan γs cos(θw − γa))) (5)

Note that Eqn 5 is a scalar equation – only the magnitude of
the rate of spread vector has been affected; the direction of the
slope-corrected rate of spread must still be taken as the direc-
tion of the wind-induced rate of spread vector. Eqn 5 has been
employed in fire spread models such as FIRESCAPE (G. J. Cary,
pers. comm., 2006).

Proceeding the second way, we separate the wind-induced
rate of spread vector into components, apply Eqn 1 to the ups-
lope component and then recombine the amended components.
Using the terrain-following coordinate system again, we may
decompose Rw as in Eqn 2.

The transverse component of Rw experiences no topographic
slope (as it follows lines of constant elevation) and so no
slope correction is required for this component of Rw. How-
ever, the upslope component of Rw points directly upslope (or
downslope), and so Eqn 1 can be applied. This results in a slope-
corrected version of the upslope component of Rw given by

Rw cos(θw − γa) exp(0.069γs)û

The unaltered transverse component can now be recom-
bined with the corrected upslope component to give the slope-
corrected rate of spread vector R(w, γs):

R(w, γs) = Rw sin(θw − γa)t̂ + Rw cos(θw − γa) exp(0.069γs)û
(6)

Note that the magnitude of the slope-corrected rate of spread
vector is given by

R(w, γs) = Rw

√
sin2(θw − γa) + cos2(θw − γa) exp(0.138γs)

(7)

and that the direction of the slope-corrected rate of spread vector,
relative to the cardinal axes, is given by

θR = γa + π

2
+ tan−1{cot(θw − γa) exp(0.069γs)} (8)

Note that both the magnitude and the direction of the slope-
corrected rate of spread will differ depending on whether we
adopt the first or second procedure above. A comparison of the
magnitude and direction of the slope-corrected rate of spread
vectors calculated using the two procedures is shown in Fig. 2.
The curves in Fig. 2 are derived assuming that the wind is blow-
ing from the north and that the topographic slope is 20◦. The
interpretation of the curves in Fig. 2 is best explained through
an example. Consider a fire driven by a northerly wind with a
head-fire rate of spread of 1 km h−1. In flat terrain, such a fire
would tend to head in a southerly direction. The black curves
in Fig. 2 suggest, however, that when such a fire experiences a
topographic slope of 20◦ aligned with a topographic aspect of
45◦, the fire will tend to head in a direction roughly 30◦ west of
south (≈210◦) and will propagate with a speed of ∼2.9 km h−1.
Thus the effect of topographic slope accelerates the fire by a
factor of three and deflects its direction of propagation by ∼30◦
to the west.
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Fig. 2. (a) Magnitude of the slope-corrected rate of spread vector: the
black line is derived using the vector method, whereas the grey line is
derived using the scalar method; (b) direction of the slope-corrected rate of
spread vector: the black line is derived using the vector method; the grey line
indicates that the scalar method doesn’t alter the direction of spread. A wind-
induced rate of spread of 1 km h−1 and a topographic slope of 20◦ have been
assumed.

The scalar and vector methods described in this section
are only two of many possible methods that could be devised
to combine wind and slope information within the McArthur
framework. Another will be described below after discussing the
method of McAlpine, whereas others still are being developed
(K. Tolhurst and D. Chong, pers. comm., 2006).

Rothermel, Albini and Finney
Rothermel (1972) models the impact of wind and slope on a fire
front as independent, additive factors φw and φs, respectively.
The scalar rate of spread in the direction θ (measured from the
upslope direction, i.e. γa ± π) is then given by

R(θ) = (1 + φs(θ) + φ(θ, θw))R0 (9)

where R0 is the corresponding rate of spread in the absence of
wind and topographic slope. It is important to note that the inclu-
sion of the parameter θ allows derivation of a wind–slope correc-
tion factor for all parts of the fire’s perimeter, not just the head.

For that part of the fire front spreading in the direction that
the wind is blowing (θ = θw − γa), the wind coefficient φw is
estimated using a power law as

φ∗
w = C‖w‖B (10)
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where the coefficients B and C are functions of fuel properties
such as the packing ratio and particle size.

For the general case, when θ �= θw − γa, we replace w with the
component of the wind vector parallel to the direction θ; hence

φw(θ, θw) = φ∗
w cosB(θw − γa − θ) (11)

or, more succinctly,

φw(θ, θw) = C(w · θ̂)B (12)

where θ̂ = sin θt̂ + cos θû is the unit vector in the direction θ

from uphill.
Beer (1991) and Weber (2001) point out that it is possible for

the parameters B and C to exceed unity, in which case the model
suggests that the fire can spread faster than the wind driving
it. Although this is not a major concern for low wind speeds,
as in the absence of wind a fire will still propagate at a non-
zero rate owing to radiative effects, it can cause problems when
a fire is driven by strong winds and advection of heated gases
becomes the dominant influence on its propagation. In this case,
the problems can be remedied by placing an upper limit on the
value of φw.

For the case of a fire spreading directly upslope (θ = 0), the
slope coefficient is estimated as

φ∗
s = A tan2 γs (13)

where the coefficient A is a function of fuel particle size and
packing ratio.

For the general case (θ �= 0), the slope coefficient φs(θ) is
based on the topographic slope sensed in the direction θ from
upslope. It is given by (Albini 1976)

φs(θ) = A tan2 γs cos2 θ = φ∗
s cos2 θ (14)

Note here that when the elevation surface is given as the graph
of a function h(x,y), then we can also express Eqn 14 in more
general terms as

φs(θ) = A(D
θ̂
h)2 = A(∇h · θ̂)2 (15)

The methods used to derive the general wind and slope cor-
rection factors above are similar to those employed in the scalar
McArthur method. In essence, the quantities in Eqns 10 and 13,
which govern the special case of fire spreading directly upslope
under the influence of upslope winds, are simply replaced with
the appropriate components of the slope and wind vectors in the
general direction of interest.

For a wind blowing from the north, the relative rate of spread
in the southerly direction is given by

1 + C‖w‖B ± A tan2 γs cos2 γa (16)

Here the positive sign applies when the aspect has a south-
facing component; the negative sign applies when the aspect has
a north-facing component.

Fig. 3 shows how the scalar rate of spread in the southerly
direction varies with topographic aspect. The curves in Fig. 3 are
derived assuming a topographic slope of 20◦ and a 10-km h−1
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Fig. 3. Wind–slope correction factor for southerly fire spread according
to the Rothermel–Albini method. A topographic slope of 20◦ and a wind
blowing from the north at 10 km h−1 have been assumed.

wind blowing from the north. The constants were assumed to be
as given in Weise and Biging (1997).

It is interesting to note that relative rate of spread predicted
by the scalar method of Rothermel and Albini is of similar shape
to that predicted by the vector McArthur method. The approach
also allows the possibility of a fire burning upslope against the
direction of the bulk winds, given that unburnt fuel is available to
carry the fire in that direction. This can occur, for example, when
a spot-fire ignites on a lee slope. This possibility is reflected in
the negative relative rate of spread values in Fig. 3 for aspects that
are approximately south-facing. According to this model, a fire
will propagate upslope against northerly bulk winds whenever
the aspect has a south-facing component and satisfies

cos2 γa >
1 + C‖w‖B

A tan2 γs
(17)

For the example depicted in Fig. 3, the fire will propa-
gate upslope against the wind for aspects in the range of 162◦
to 197◦.

Finney (1998) extends the concepts of Rothermel and Albini
discussed above to a full two-dimensional fire spread model
called FARSITE using Huygens’ Principle. In this method, the
head-fire rate of spread is again given by Eqn 9. The orientation
of the ellipses that form the basis for the application of Huygens’
Principle, however, are given by combining the wind and slope
coefficients (Eqns 10 and 13) using vector addition. The orien-
tation of the ellipse at a point defines the direction of spread at
that point. The direction of spread according to Finney (1998) is
thus in the direction of the vector

Uws = C‖w‖B sin(θw − γa)t̂ + {C‖w‖B cos(θw − γa)

+ A tan2 γs}û (18)

This modification extends the scalar Rothermel model into a
vector model for fire spread.

McAlpine
McAlpine et al. (1991) model the effects of wind and slope on
fire behaviour within the context of the Canadian Forest Fire
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Fig. 4. Comparison of the slope-correction factors from the McArthur
(black) and McAlpine (grey) methods.

Behaviour Prediction (FBP) System. This system utilises the
Canadian Fire Weather Index (FWI) System, a component of
which is the Initial Spread Index (ISI ). The Initial Spread Index
uses information on wind and fuel moisture to estimate the linear
rate of spread of a head-fire. Topographic slope is not specifi-
cally included as an additional variable in this system. The ISI
is given in terms of the wind vector w and the fine fuel mois-
ture content after drying m by (Van Wagner and Pickett 1975;
Forestry Canada Fire Danger Group 1992)

ISI = 0.208 f (w)g(m) (19)

where
f (w) = exp(0.05039‖w‖) (20)

and

g(m) = (91.9 exp(−0.1386))

(
1 + m5.31

4.93 × 107

)
(21)

where m is derived from the fine fuel moisture content (FFMC)
as (Forestry Canada Fire Danger Group 1992):

m = 147.2(101 − FFMC)

59.5 + FFMC

The rate of spread is then given by

R = β0(1 − exp(−β1ISI ))β2 (22)

where β0, β1 and β2 are positive, fuel-specific constants.
To account for the effects of slope on a head-fire’s rate of

advance in the Canadian Forest FBP System, McAlpine et al.
(1991) present a method for converting the effect of slope into
an equivalent wind speed and direction. Their approach is based
on the equation

Rs = R0 exp(3.533(tan γs)
1.2) (23)

which was obtained by fitting a curve to a combination of spread
rate data and model predictions taken from five separate studies
concerned with accounting for the effect of topographic slope
(Van Wagner 1977). One of the datasets used in fitting Eqn 23
was the one used to derive the McArthur model discussed above
and thus it is not surprising to find that the functions on the right
hand side of Eqns 1 and 23 agree quite closely up to slope angles
of 40◦. The two functions are shown in Fig. 4.

Eqn 23 can then be substituted into Eqn 22, which can be
rearranged to give the initial spread index due to the effects of
slope

ISIs = − 1

β1
ln

[
1 −

(
Rs

β0

) 1
β2

]
(24)

Eqns 19 and 20 can be combined and rearranged to give an
equation for wind speed in terms of ISI and m. Substituting the
ISI due to slope, given by Eqn 24, into the resulting equation, we
deduce an equivalent wind vector w∗

s that mimics the effect of
topographic slope. The magnitude of this vector, known as the
wind speed equivalent, is given by

‖w∗
s ‖ = 19.845 ln


− ln


1 −

(
R0 exp(3.533(tan γs)

1.2)

β0

) 1
β2






− 19.845 ln(0.208β1g(m)) (25)

while its direction is taken as the upslope direction.
This equivalent wind vector, which accounts for slope effects,

and the actual wind vector can then be added to produce a net
effective wind vector Uws = w + w∗

s that accounts for the com-
bined effects of wind and slope. The net effective wind vector
then substitutes for the actual wind vector in Eqn 20 when a
topographic slope is present. Fig. 5 shows how the net effective
wind speed and direction change as topographic aspect is var-
ied. The curves in Fig. 5 were derived assuming a C-7 fuel type
with an FFMC of 89% and a 10-km h−1 wind blowing from the
north. A C-7 fuel type corresponds to β0 = 45, β1 = 0.0305 and
β2 = 2. The light grey, black and dark grey curves correspond to
topographic slopes of 10◦, 20◦ and 30◦, respectively.

The net effective wind direction curves in Fig. 5b exhibit
different behaviour depending on whether ‖w∗

s ‖ < ‖w‖ or not,
particularly for aspects that are approximately south-facing
(γa ≈ 180◦). If ‖w∗

s ‖ < ‖w‖, then the ambient wind will dom-
inate an opposing upslope wind equivalent (e.g. the light grey
curve in Fig. 5b), otherwise the model predicts that the fire will
burn uphill against the wind on lee slopes (e.g. the black and
dark grey curves in Fig. 5b).

A shortcoming of the approach of McAlpine et al. is that the
wind speed equivalent is only defined when

R0 exp(3.533(tan γs)
1.2) < β0 (26)

For the example portrayed in Fig. 5, this condition is violated
when γs ≈ 50◦.

We note that although the shapes of the curves describing the
variation in effective wind speed are similar to relative rate of
spread curves obtained using the McArthur method, the effective
wind direction curves display significantly different behaviour
to that seen in Fig. 2b. The cusp points seen at aspect angles of
50◦ and 270◦ in Fig. 2b are not present in Fig. 5b. In the method
of McAlpine et al., an upslope wind-equivalent vector is added
to the upslope component of the actual wind vector before the
result is added to the transverse component of the actual wind
vector. In the McArthur vector method, the upslope component
of the wind-induced rate of spread is multiplied by a scalar slope
correction factor before being added to the transverse component
of the wind-induced rate of spread. However, when γa ≈ 90◦ or
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Fig. 5. (a) Net effective wind strength, and (b) net effective wind direction.
The light grey, black and dark grey curves correspond to topographic slopes
of 10◦, 20◦ and 30◦, respectively. The wind is assumed to be blowing at
10 km h−1 from the north.

270◦, the upslope component of the wind-induced rate of spread
is zero and so scaling this makes no difference.

Methods such as the vector McArthur method may there-
fore be referred to as multiplicative whereas the McAlpine et al.
approach may be referred to as additive. The multiplicative form
of the McArthur method means that it does not admit the possi-
bility of a fire burning upslope against the wind, as the approach
of McAlpine et al. does.

McAlpine et al. (1991) point out that their method can be
used to improve the Rothermel model (Eqn 9). The sum of the
slope and wind factors φs + φw present in Eqn 9 can be replaced
(modulo some calibration terms) by Uws = w + w∗

s . As we have
already seen in the method of Finney (1998), this effectively
turns the scalar Rothermel method into a vector method. Some
ambiguities arise in doing this, however. These ambiguities are
discussed in the General framework section.

It is also interesting to point out that one could apply the
logic of McAlpine et al. (1991) to the McArthur fire behaviour
prediction framework. In this framework, the rate of spread is
approximately given by (Noble et al. 1980)

Rw = 1.5 × 10−3WF D exp

(
T − H

30

)
exp(0.0234‖w‖)

= R0 exp(0.0234‖w‖) (27)

Thus, assuming windless conditions and following the same
reasoning as McAlpine et al. (1991), we can equate the right
hand sides of Eqns 27 and 1 and obtain

‖w∗
s ‖ = 2.96γs (28)

Hence the slope effect in the McArthur model can be mim-
icked by an equivalent upslope wind vector with magnitude given
by Eqn 28.

Unfortunately, owing to the design of the McArthur model,
Eqn 28 gives the equivalent wind speed in units of degrees! This
means that we cannot add the upslope wind-equivalent vector
to the ambient wind vector as done by McAlpine et al. This
problem could be remedied by reformulating the slope correction
Eqn 1 in terms of the slope (tan γs) instead of the slope angle
γs. Reformulating Eqn 1 as such admits the possibility of an
additive McArthur method.

For the moment, let us assume that Eqn 23 is a suitable refor-
mulation of Eqn 1. The close agreement of the two curves in
Fig. 4 suggests that this is at least approximately so. Using Eqn
23 leads to an upslope wind equivalent given by

‖w∗
s ‖ = 150.98(tan γs)

1.2 (29)

Hence, an additive vector McArthur approach results in a net
effective wind vector given by

U′
ws = ‖w‖ sin(θw − γs)t̂ + (‖w‖ cos(θw − γs)

+ 150.98(tan γs)
1.2)û (30)

Nelson
Elaborating on the ideas introduced in McAlpine et al. (1991)
and Finney (1998), Nelson (2002) derives an effective wind
speed that incorporates effects due to wind and slope by con-
sidering the effect of the motion of buoyant air upslope. The
reasoning employed is in keeping with the intuitive notion that
the extra heat flowing upslope will tend to ‘steer’ the fire in that
direction. As mentioned, the main addition to this method is the
inclusion of the vertical motion of air due to buoyancy, which is
taken to have speed Ub. The component of this buoyant velocity
parallel to the terrain surface at a given point is then given by
Ub sin γs.

In this method, an ambient wind vector w is assumed to
be blowing across a small segment of the head-fire. Working
in terrain-following coordinates, the upslope component of the
ambient wind is given by ‖w‖ cos(θw − γa) while the transverse
component is given by ‖w‖ sin(θw − γa). Vectorially adding the
upslope components of the ambient and buoyant wind motions
to the transverse ambient wind component results in an effective
wind vector

Uws = ‖w‖ sin(θw − γa)t̂ + (Ub sin γs + ‖w‖ cos(θw − γa))û
(31)

with magnitude Uws given by

Uws =
√

‖w‖2 sin2(θw − γa) + (Ub sin γs + ‖w‖ cos(θw − γa))2

(32)
and direction θws given by

tan θws = ‖w‖ sin(θw − γa)

Ub sin γs + ‖w‖ cos(θw − γa)
(33)
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Fig. 6. (a) Magnitude of the slope-corrected effective wind speed Uws;
(b) direction of the slope-corrected wind; the light grey, black and dark grey
curves correspond to topographic slopes of 10◦, 20◦ and 30◦, respectively.
A unit wind blowing from the north and a buoyant wind of 2.75 units have
been assumed.

Note that some amendments will need to be made to Eqn
33 when θw − γa is greater than 90◦. Some curves representing
the general effective wind (and hence rate of spread) direction
formula for three different slope angles are given in Fig. 6, along-
side the corresponding curves depicting how the effective wind
speed varies with topographic aspect. The curves were derived
assuming that Ub = 2.75 as this vertical velocity gives rise to
a flame angle of approximately 20◦ when the horizontal wind
speed is taken as unity.

We again note that the effective wind direction curves dis-
play significantly different behaviour to that seen in Fig. 2b. The
cusp points seen at aspect angles of 90◦ and 270◦ in Fig. 2b
are not present in Fig. 6b, as was the case for the method of
McAlpine et al. This is due to the fact that in Nelson’s method,
the upslope component of the buoyant wind velocity is added
to the upslope component of the ambient wind, whereas in the
McArthur methods the upslope component of the wind-based
rate of spread vector is multiplied by a scaling factor. Nelson’s
method is another example of an additive vector method.

The curves in Fig. 6b display some interesting behaviour. For
mild topographic slopes (10◦, 20◦), the effective wind direc-
tion tends to deviate towards the upslope direction for aspects
between 0◦ and 180◦ but for a downslope fire (γa = 180◦), the

effective wind direction is downslope, which means that the fire
will propagate as a downslope heading fire. However, for topo-
graphic slopes beyond some threshold value, the fire will tend
to burn upslope against the ambient wind. This can be seen in
the curve corresponding to γs = 30◦ in Fig. 6b. A formula for
determining the threshold topographic slope is given in Nelson
(2002): the sine of the threshold topographic slope angle γ∗

s is
given as the ratio of the ambient and buoyant wind speeds, that is

sin γ∗
s = ‖w‖

Ub
(34)

For the example portrayed in Fig. 6b, the threshold topo-
graphic slope angle is γ∗

s ≈ 21.3◦.

McRae
McRae (2004a) proposed a simple geometric approach to
describe the effect of slope on a fire’s rate of spread.The approach
invokes the concept of flame tilt angle and considers the rela-
tive advance of an upslope flame as compared with that of an
identical flame in flat terrain. The flame tilt angle or simply the
flame angle θf is defined as the angle that the front face of the
flame makes with the vertical. Note that θf > 0 for a heading
fire (a fire whose flames lean over unburnt fuel) and θf < 0 for
a backing fire (a fire whose flames lean over burnt fuel). The
flame angle results from a combination of the buoyant vertical
motion of the (local) air due to heating and the horizontal motion
of the air due to the prevailing winds. Hence, in windless con-
ditions the flame angle will be zero (flame is vertical), as there
is no horizontal component to the motion of the air. The inclu-
sion of the flame angle, which depends on the buoyant vertical
motion of air, means that this approach can be seen to be roughly
analogous to the method of Nelson (2002). It should be pointed
out, however, that this method assumes the ambient wind travels
horizontally rather than parallel to the surface, as is assumed in
Nelson’s method.

The flame angle is important for the rate of spread of a
wildfire propagating via radiative heat transfer. In the case of
a heading fire, flames tilting towards unburnt fuel extend the
range of radiative heat transfer (preheating range), which acts
to increase the rate of spread, whereas for a backing fire, the
range of heat transfer is decreased and the fire’s rate of spread is
consequently decreased (Pyne 1984).

The flame angle is also important for fires spreading by direct
flame contact with adjacent fuels and it is this aspect that is best
represented in the present approach. If we consider a heading fire
burning in flat terrain, then we may take the rate of spread (due
to flame contact) as proportional to the length a, the horizontal
displacement of the flame at the height of the fuel, as depicted
in Fig. 7a. If however, the terrain is inclined at an angle γs to the
horizontal, so that the fire is propagating upslope, then the slope
also contributes to the rate of spread. This situation is depicted
in Fig. 7b.

As can be seen with reference to Fig. 7a and b, the horizontal
displacement of the flame at the height of the fuel is now given
by the length c > a. The contribution of topographic slope to
the rate of spread of the fire is then described by the wind–
slope correction factor, which is estimated as the ratio � = c/a.
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Fig. 7. Schematics showing how flames come into contact with fuel in
(a) flat terrain, and (b) sloping terrain.

Working with the aid of Fig. 7a and b, we have:

tan γs = b

c
, and tan θf = c

b + H
= a

H

hence,
c

c tan γs + H
= a

H

Rearranging, we obtain

c

a
= H

H − a tan γs

= H

H − H tan θf tan γs

= 1

1 − tan θf tan γs

Hence the wind–slope correction factor is estimated as

� = (1 − tan θf tan γs)
−1 (35)

So far we have considered the effect of wind and slope on
a fire’s rate of spread in the case when the prevailing wind and
the topographic slope are aligned so that the wind is blowing
directly upslope. As mentioned previously, this is hardly ever
the case. To obtain an expression for the general situation, there
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Fig. 8. Comparison of the slope-correction factors from the McArthur
(black) and McRae (grey) methods. A topographic slope of 20◦ and a flame
angle of 20◦ have been assumed.

are again two ways to proceed. As before, the scalar method
involves deriving an amended topographic slope angle that is
valid for all wind directions, whereas the vector method involves
a vector decomposition of the wind-induced rate of spread vec-
tor before applying the above slope correction formula to the
upslope component of the wind-induced rate of spread only.

Applying the scalar method, we need to replace the upslope
gradient tan γs with the gradient experienced in the direction of
the wind-induced rate of spread. This quantity was calculated
in Eqn 4. Thus substituting tan ψ as given by Eqn 4 in place of
tan γs in Eqn 35, we obtain an expression for the slope-correction
factor as

� = (1 − tan θf tan γs cos(θw − γa))
−1 (36)

Therefore the slope-corrected rate of spread, according to this
method, is given by

R(w, γs) = Rw

1 − tan θf tan γs cos(θw − γa)
(37)

Fig. 8 gives a comparison of the slope-correction factors
derived using the McArthur relationship (Eqn 1) and the McRae
relationship (Eqn 35). The curves in Fig. 8 are derived assuming
that the wind is blowing from the north and that the topographic
slope is 20◦. The flame angle was taken to be 20◦, regardless
of the aspect. The assumption of a 20◦ flame angle simplifies
the comparison but is perhaps not well justified for all aspects.
An approach like that utilised in Nelson’s method, where flame
angle is derived based on buoyancy effects could lead to more
realistic results but this possibility is not pursued here.

Fig. 8 illustrates that the slope-correction factors derived
using the McArthur and McRae methods give rise to curves
of similar shape. One would therefore expect that, once the var-
ious calibration constants have been taken into account, the two
methods would give quantitatively similar predictions for the
scalar rate of spread.

We can extend the scalar relationship (Eqn 37) to apply in a
vector setting as was done in obtaining Eqn 6. This involves scal-
ing the upslope component of the wind-induced rate of spread
vector by the scaling factor in Eqn 37, only now the flame angle
θf is replaced by the flame angle experienced in the upslope
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Fig. 9. (a) Magnitude of the slope-corrected rate of spread: the black
line is derived using the vector method, whereas the grey line is derived
using the scalar method; (b) direction of the slope-corrected rate of spread
vector; the black line is derived using the vector method; the grey line indi-
cates that the scalar method doesn’t alter the direction of spread. A unit wind
from the north, a topographic slope of 20◦ and a flame angle of 20◦ have
been assumed.

direction. As flame angle is measured form the vertical, this is
accomplished by replacing tan θf with tan θf sec(θw − γa). This
gives rise to the vector relationship

R(w, γs) = Rw sin(θw −γa)t̂+ Rw cos(θw − γa)

1 − tan θf tan γs sec(θw − γa)
û

(38)
Application of Eqn 38 requires some caution. For

example, the upslope component has a singularity when
tan θf sec(θw − γa) = cot γs. However, this does not cause a
problem because we also require that the flame angle sensed in
the upslope direction be less than the complement of the topo-
graphic slope angle, otherwise the flames penetrate the terrain
surface. Hence, we have the supplementary condition

tan θf sec(θw − γa) < cot γs (39)

Imposing this condition ensures that the upslope compo-
nent in Eqn 38 remains non-singular. Note further that as
tan θf sec(θw − γa) → cot γs, the flames tend to become parallel
to the terrain surface – this leads to a blow-up in the rate of spread.
This can be seen in Fig. 9a where the magnitudes of the slope-
corrected rate of spread given by Eqns 37 and 38 are compared.
The curves in this figure were derived assuming a unit wind blow-
ing from the north and a topographic slope of 20◦. As before,

to simplify the comparison, a flame angle of 20◦ was assumed
regardless of aspect. A comparison of the direction of spread
derived from the two methods is shown in Fig. 9b. The effect on
the direction of spread as the flames tend to become parallel to
the terrain surface can again be seen in Fig. 9b, with the predicted
direction diverging wildly upslope at aspects close to 90◦ and
270◦, when the wind-induced rate of spread is transverse to the
slope. However, the reader is reminded that McRae’s method is
a mathematical idealisation used to correct the head-fire rate of
spread only. In reality, the discontinuities in Fig. 9a, b are likely
to not be as extreme, if they occur at all, owing to the curvature
of the fire perimeter and the likely variation in flame angle.

McRae’s approach does have one disadvantage. Eqn 37 can-
not be used when θf = 0 (i.e. under windless conditions). In
fact, the derivation of Eqn 37 does not apply since a = 0 in this
case (see Fig. 7) and so the ratio c/a is undefined. Substituting
θf = 0 into Eqn 37, we find that R(γs) = R0, which is indepen-
dent of any topographic slope that might be present. Despite this
shortcoming, the agreement with McArthur’s empirically based
method suggests that this simple geometrical approach captures
at least some of the processes involved in wind–slope interaction.

It is also of interest to note that McRae’s approach results in
a wind–slope correction factor in which the effects of wind and
slope are not additive.This is in keeping with results of empirical
studies also (e.g. Murphy 1963).

Pagni and Peterson
The physical model of Pagni and Peterson (1973) is derived from
the principle of conservation of energy, applied to an inclined,
one-dimensional, homogeneous, porous fuel bed. The ambient
wind is taken to be flowing parallel to the inclined fuel bed. In this
model, the heat transfer mechanisms considered are essentially
radiation, convection and conduction. The combined effects of
wind and slope are included only in the radiative portion of heat
transfer, where they are described by the shape factor between
the flame and surface element. The shape factor is a function
of the angle between the flame and the normal to the fuel bed,
which is given by

	ws = γs + θf (40)

Here θf is an empirically determined flame tilt angle
given by

tan θf = 1.4‖w‖√
gL

(41)

where L is the flame length and g is the gravitational acceleration
at the surface. Again, this amounts to treating the wind and slope
effects as independent, additive factors, at least for the radiative
component of heat transfer.

The shape factor (Eqn 40) is then used to modify a flame
radiation term of the form


RF = αL

2lF
(1 + sin 	ws) (42)

which is then added to the wind-induced rate of spread. Here α

is the absorptivity of the fuel, L is the flame length and lF is the
fuel depth. Note that in this model, wind is also used to modify
the convective budget. When wind and topographic slope are not
aligned, we would again need to replace γs with the slope angle
sensed in the direction of interest.
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Morandini et al.
In a series of recent articles, European scientists have pro-
posed a two-dimensional model of fire spread across a fuel
bed. The model is essentially a thermal balance that gives
rise to a reaction-diffusion partial differential equation for the
spatio-temporal temperature distribution over the fuel bed. The
solution of this partial differential equation, subject to suitable
boundary and initial conditions, yields a combustion wave. The
basic model, formulated assuming conditions of no-wind and
no-slope, is described in Balbi et al. (1999). The problem of
generalising the basic model to accommodate the presence of
topographic slope is dealt with in Santoni et al. (1999). In this
treatment, a supplementary radiative term is introduced into the
thermal balance to account for the heat radiated from the flame
ahead and upslope of the fire front. This term is modelled, using
the Stefan–Boltzmann law, as

QRsup = P(γs) cos ξT 4 (43)

where ξ is the angle between the direction of slope (∇h) and the
unit outward normal to the fireline. In the context of the models
discussed previously, the supplementary radiation term could be
expressed as

QRsup = P(γs) cos(θw − γa)T
4 (44)

The function P is determined empirically.
A method for including the combined effects of wind and

slope in this model has been proposed by Morandini et al. (2002).
In this treatment, the slope angle γs seen in Eqn 44 is replaced
with the flame tilt angle βws = θf + γs (note that in Morandini
et al., the flame tilt angle is denoted by βw and is referred to as the
wind tilt angle, which is the flame tilt angle due to wind alone).
Recall that in the absence of wind, the flame tilt angle reduces
to the topographic slope angle because flames are supposed to
be oriented vertically. Conversely, under wind and no-slope con-
ditions, the flame tilt angle results from a balance between the
(horizontal) wind and the buoyant vertical motion of the air. If
the upward gas flow velocity is Ub, then the flame tilt angle under
conditions of wind and no-slope is given by βws = θf where

tan θf = ‖w‖
Ub

(45)

Under conditions of wind and slope, there is a degree of
ambiguity surrounding the calculation of flame tilt angle. The
result of the calculation depends on whether we take the wind
as horizontal or as parallel to the inclined surface. Taking the
wind as flowing parallel to the inclined surface, we decompose
the wind vector w into its horizontal component ‖w‖ cos γs and
its vertical component ‖w‖ sin γs. These components can then
be added (vectorially) to the upward gas flow velocity Ub to
produce a wind tilt angle given by

tan θf = ‖w‖ cos γs

Ub + ‖w‖ sin γs
(46)

If, however, we take the wind as horizontal, then the upslope
component of the wind vector is given by ‖w‖ cos γs. The ups-
lope component of the wind vector may be further decomposed

into horizontal and vertical components given by ‖w‖ cos2 γs
and ‖w‖ cos γs sin γs, respectively. Hence, ignoring the compo-
nent of wind perpendicular to the inclined surface, we obtain the
following expression for the wind tilt angle

tan θf = ‖w‖ cos2 γs

Ub + ‖w‖ cos γs sin γs
(47)

Inclusion of the component of wind perpendicular to the
inclined surface in the calculation of Eqn 47 results in Eqn 45.

To properly apply this method in operational situations, it
is important to note how the wind is measured. Typically an
anemometer is oriented so that it measures the horizontal com-
ponent of the wind. When this is the case, Eqn 47 is likely to
be more reliable than Eqn 46 that appears in Morandini et al.
(2002). On average however, the wind is likely to be aligned
more or less parallel to the terrain surface, except at locations
where slope changes dramatically. Wind is also taken as parallel
to the surface in transport models that estimate spatially varying
wind fields over complex terrain (Forthofer et al. 2003; Butler
et al. 2006). In reality, however, distinguishing when the wind
should be taken as horizontal or parallel to the surface may be
beyond the reasonable limits of operational accuracy.

To extend the approach of Morandini et al. to the more general
setting, when the wind vector and topographic aspect are not
aligned, one would need to replace slope and wind tilt angles
by the corresponding angles sensed in the particular direction of
interest, as was done in the McRae section.

A general framework

In this section, we discuss the formal similarities between the
wind–slope correction methods of the various models discussed
above.

The scalar methods fall into one of two classes. Members
of the first class are characterised as being based on the wind-
induced rate of spread and are of the form

R(w, γs) = σ(γs, θw, γa)Rw (48)

In methods belonging to this class, the wind-induced rate
of spread is multiplied by a slope correction factor to give a
slope-corrected rate of spread. They may therefore be classed as
multiplicative scalar methods.

Members of the second class are characterised as being based
on the base rate of spread and may be expressed in the form

R(w, γs) = (1 + φws(‖w‖, θw, γs, γa))R0 (49)

In this class of methods, the base rate of spread is added to
a term representing the rate of spread contribution due to wind
and slope effects, where this term is modelled as a multiple of
the base rate of spread. They can therefore be classed as additive
scalar methods.

As we have seen, the scalar methods give rise to vector meth-
ods. Scalar methods of the form of Eqn 48 are readily generalised
to vector methods that utilise the wind-based rate of spread
vector. Doing so gives rise to following general framework

R(w, γs) = B−γa Sγs Bγa Rw (50)
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where Bγa is the change of basis matrix (Anton 1987), which
facilitates a switch from the standard cardinal coordinates to the
terrain-following coordinates,

Bγa =
[−cos γa sin γa
−sin γa −cos γa

]

and Sγs is the slope-correction matrix given by

Sγs =
[

1 0
0 σ

]

Here σ is the same quantity given in Eqn 48, with the
arguments omitted.

Eqn 50 spells out the steps involved in methods belonging
to this class. First a coordinate transformation is applied so
that we are working with respect to coordinate axes that are
aligned with the upslope and transverse directions (Bγa ); sec-
ond, the scalar slope-correction relationship is applied to the
upslope component of the wind-induced rate of spread vector
(Sγs ), and finally the coordinates are back-transformed so that the
coordinate axes again align with the cardinal directions (B−γa ).
Methods adhering to this form can be classed as multiplicative
vector methods.

When one considers how the scalar methods of the form of
Eqn 49 might be extended to a vector form, certain ambiguities
arise. Both McAlpine et al. (1991) and Nelson (2002) assert that
rate of spread models of the form of Eqn 49 could be improved
by replacing φws with an equivalent wind vector, derived as the
sum of the ambient wind vector and an upslope wind-equivalent
vector. Eqn 49, however, requires that the base rate of spread is
scaled by the factor 1 + φws, and so at least two options would
seem to arise. The first option is to simply take the magnitude
of the equivalent wind vector as the factor φws, calculate the
magnitude of the rate of spread using Eqn 49 and dictate that the
direction of the wind–slope corrected rate of spread is simply
that of the equivalent wind vector, so that

‖R(w, γs)‖ = (1 + ‖Uws‖)R0

θR = θws (51)

This is the method that seems to be advocated in McAlpine
et al. (1991) and Nelson (2002).

The second option, which is perhaps the more natural one, is
to assign a direction to the base rate of spread. We thus assume
that the base rate of spread can be represented by a vector with
length R0, directed along the outward normal to the fire front (as
this is the direction one would expect the fire to propagate in the
absence of wind and slope effects). This assumption then gives
rise to the following general framework

R(w, γs) = (n̂ + Uws)R0 (52)

where n̂ denotes the unit outward normal at the particular point
on the head-fire line. Rather than only ‘vectorising’ the factor
φws we have ‘vectorised’ the sum 1 + φws. In this context, Eqn
51 can be seen as an approximate version of Eqn 52 that applies
when the effects of wind and slope are the dominant fire-spread
mechanisms, i.e. when ‖Uws‖ >> 1. Methods that adhere to this
form may be classed as additive vector methods.

The outward unit normal to the fire perimeter also naturally
arises when one considers how to apply wind–slope correction
to the whole fire perimeter. For example, in the additive vector
method espoused by Viegas (2004a), the outward unit normal
to the fire perimeter can be used to section the fire perime-
ter into parts corresponding to different spread directions. In
this approach, the slope effect is again represented by a vector
directed upslope, which is added to the wind-induced rate of
spread vector. However, for different parts of the fire perime-
ter, the slope and wind effects can be parallel or antiparallel to
the slope and wind directions, depending on whether ∇h · n̂ and
w · n̂ are positive or negative. Wind–slope correction methods
applicable to the whole fire perimeter, such as that discussed
in Viegas (2004a), are of major importance for understanding
landscape-scale fires in complex terrain where the concept of
‘head-fire’ is not always well defined.

Discussion

We have presented a range of methods used to correct fire rate of
spread for the effects of wind and topographic slope. The meth-
ods were based on either empirical knowledge of the response of
the rate of spread of a fire to wind and topographic slope, on geo-
metric reasoning, or on a combination of the two. Both scalar
and vector methods for wind–slope correction have been dis-
cussed. The vector methods tended to give more realistic results
than the scalar methods – this is particularly true of the pre-
dicted direction of spread. The scalar methods do not allow
for the fact that the effects of wind and slope are directional.
However, the vector methods take into account the alignment
of the wind and slope effects. Vector methods treat the slope
effect as being directed upslope as this fits with our intuition
that the extra heat moving upslope tends to steer the fire in that
direction.

The vector formulation of the empirically based approach of
McArthur discussed above produces reasonable results except
when the wind-induced rate of spread is aligned across a slope.
The method predicts that in these instances topographic slope
does not affect the direction of spread; a fire will continue to burn
across slope regardless of the gradient of the terrain. This is at
odds with observations of actual fires that have an upslope com-
ponent to their propagation even when the wind, and hence the
wind-induced rate of spread, are directed in a direction perpen-
dicular to the upslope direction. The reason for this shortcoming
lies in the multiplicative form of the method. This problem could
be overcome by reformulating McArthur’s approach as an addi-
tive vector method, in the spirit of the approach of McAlpine
et al. (1991) and Finney (1998).

The approach of McRae, which also has a multiplicative form,
suffers from the same problem as the McArthur approach and has
the additional shortcoming of not accounting for slope effects
in the absence of wind. The geometrical approach of McRae,
however, is appealing because it is formulated using basic math-
ematical principles and results in a function of quite similar shape
to those derived empirically. It is therefore likely that such a for-
mulation could be calibrated so as to apply to any particular
location or fuel type. It is also interesting to note that this simple
geometric approach leads to a function that is not additive with
respect to wind and slope effects, a property that is assumed in
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methods such as that of Rothermel (1972), Pagni and Peterson
(1973) and Morandini et al. (2002).

The approach of Rothermel and Albini is an extension of
Rothermel’s scalar method that takes account of the direction
of wind and slope in a limited way, without progressing to a
full vector form of the model. This additive approach was able
to capture some of the features contained in the vector multi-
plicative McArthur approach. Again this serves to demonstrate
the strength of an additive approach to wind–slope correction of
head-fire rates of spread. The additive vector approach of Finney
(1998) extends the method to a full vector approach, thereby
overcoming some of the shortcomings of the scalar approach.

The additive vector method of McAlpine et al. (1991)
assumes that the effect of topographic slope can be approximated
by an equivalent upslope wind field. Such an approach again fits
with our intuition that topographic slope tends to steer a fire in the
upslope direction. However, as pointed out by McAlpine (pers.
comm., 2006), the non-linear nature of fire spread models means
that care needs to be taken in the application and interpretation
of these types of methods. Using vector addition to combine the
individual rates of spread due to slope and wind will give a differ-
ent predicted net rate of spread vector than would be obtained by
first adding the wind and upslope wind-equivalent vectors and
using the resultant net wind vector to predict the rate of spread
vector.

A disadvantage of the approach of McAlpine et al. (1991) is
that it breaks down for large topographic slopes (see Eqn 26).
This reflects the fact that empirical studies at both laboratory
and field scales typically consider slopes under 50◦. However,
because slopes steeper than 50◦ can sometimes occur in the
landscape, it would seem reasonable to desire a model that can
accommodate such occurrences.

The approach of McAlpine et al. also admits the possibility of
a fire burning upslope against the wind.Although this sort of fire
behaviour might be atypical, actual fires have been observed to
display this sort of behaviour. It would therefore seem reasonable
to favour methods that can accommodate this possibility.

The approach of Nelson, another additive vector method, uses
the buoyant motion of the air caused by the heat of the fire to
define an equivalent upslope wind field to account for the effect
of topographic slope. As such, this approach captures some of
the actual processes involved in the modulation of fire spread
by slope effects. Another advantage is that it accommodates the
possibility of a fire burning upslope against the ambient winds.
In terms of the processes underlying Nelson’s approach, this type
of behaviour can be expected when the buoyant motion of the air
generated by the heat of the fire dominates the ambient motion
of the air. A disadvantage of the approach is that it is circu-
lar: the equivalent upslope wind due to buoyancy is defined in
terms of the rate of spread (via Byram’s intensity, Byram (1959)),
which according to the approach, is obtained from the equiva-
lent upslope wind. This means that the approach must be applied
iteratively. However, although this might be a disadvantage from
the computational point of view, the intent of the method is to
capture the coupling between heat transfer and the buoyancy-
induced flow, first proposed for upslope fires in the absence of
wind by Dupuy and Larini (1999).

The methods of Pagni and Peterson and Morandini et al. both
treat wind and slope effects as non-directional, independent,

additive factors. In essence, these two wind–slope correction
methods are scalar methods. Pagni and Peterson’s approach is
manifestly one-dimensional and so doesn’t account for the direc-
tional effects of wind and slope. The method of Morandini et al.
is intended for use as part of a two-dimensional dynamical sys-
tem based on conservation of energy requirements. It therefore
seems likely, provided that the directional effects of wind and
slope are accounted for, that the approach of Morandini et al.
could reproduce some of the behaviour predicted by approaches
such as those of McAlpine et al. and Nelson. One point of ambi-
guity surrounding the approach of Morandini et al. concerns
the notion of wind vector. In this method, different results were
derived depending on whether the wind field was taken as being
directed horizontally or parallel to the terrain surface. Ideally
there should be a convention about which wind vector is the
one for standardised use, though this may exceed what can be
expected of current operational data-gathering procedures. From
a geometric point of view, adopting a convention that takes the
wind vector as flowing parallel to the terrain surface is perhaps
more appealing as this naturally enables the concept of wind
vector at a point to be extended to that of a wind vector-field
defined on the terrain surface. Given that the terrain surface
is represented by a differentiable manifold M (Abraham et al.
1988), such a wind vector field belongs to the tangent bundle
TM, which is the collection of all vectors that are parallel to the
surface M.The tangent bundle would play a canonical role in any
geometric modelling considerations. Adopting a convention that
takes wind as flowing parallel to the surface is also in keeping
with the fact the mean wind is likely to be parallel to the terrain
surface, except at places where slope changes rapidly, and the
fact that transport models for estimating spatially varying wind
fields produce outputs that are parallel to the terrain surface.
However, anemometers are usually aligned horizontally, so that
from the operational point of view, models assuming a horizontal
wind field are more immediately appealing.

Overall, the additive vector methods tended to best repre-
sent the vectorial nature of wind and slope effects, giving the
most realistic and intuitively reasonable results. It would also
seem that additive vector approaches are more naturally extend-
able to wind–slope correction methods that apply to the whole
fire perimeter. It should be noted that although the inclusion
of wind and slope correction methods can extend the predic-
tive capability of point-functional models of fire spread, it does
not necessarily overcome all of their limitations. Dynamic feed-
back effects (Viegas 2002, 2004a, 2004b, 2006; Viegas and Pita
2004; Oliveras et al. 2006) and coupling between the fire, the
topography and the atmosphere (Linn et al. 2007) can produce
fire behaviour that may not be accounted for by point-functional
models. Further experimentation with laboratory fires, careful
analysis of actual bushfires incorporating wind and terrain char-
acteristics and numerical simulation of wind- and slope-driven
fires with fully coupled fire–topography–atmosphere models are
all required to evaluate and refine the wind–slope correction
methods discussed in the present paper.
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